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Abstract. Manipulation has been a rising focus of robotics research,
from industrial automation to personal service robots. Most existing
control method are based on accurate kinematic modelling of robot
manipulators and robot calibration that needs trained personnel, lab-
oratory environment and data collection is time-consuming. However,
robots, especially service robots, similar to other mechanical devices can
be affected by slight changes or drifts caused by wear of parts, dimen-
sional drifts, and tolerances, and all of them need a new calibration. Most
methods lack robustness due to these slight changes. In this work, for
mobile robots, we propose a convenient robot-camera calibration app-
roach and a flexible control approach based on simple robot sensor cali-
bration and pose repeatability of arm. In prototype grasping experiments
on the robot Kejia, the approach is validated to be effective and robust,
achieving a high success rate of grasping, and using the same control
policy, we achieve 1st place in Manipulation and Object Recognition of
RoboCup@Home League 2016, here Manipulation and Object Recogni-
tion is a sub challenge of Home League.

Keywords: Robot-camera calibration + AR tag + Pose repeatability
Grasping + Mobile robot

1 Introduction

Vision-guided system have been widely employed in robotics such as service
robots, automated guided vehicles, etc. To make it work, robot-sensor calibration
is essential. The most common mathematical representations for the robot-sensor
calibration problem is the form: AX = XB, proposed by Tsai and Lenz [1] and
Shiu and Ahmad [2], as shown in Fig. 1 [14].

Prototype robot-sensor calibration methods are based on tracking a station-
ary object’s pose change in both tracker’s coordinate system and the camera’s
optical axis. Most of the methods need detect a stationary object from different
poses and then solving for rotation and translation either separately [1], jointly
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Fig. 1. Robot-sensor calibration. Fig. 2. Robot Kejia.

[4], or iteratively [5,6]. The calibration can be reduced to paired-point registra-
tion [7,8,12,19], Voruganti and Bartz [9] and Chen et al. [10] used a calibrated,
tracked planar chessboard pattern for robot-sensor calibration, where the 3D
position of the chessboard corners is determined in both the tracker’s coordinate
system (via tracking) and the camera’s optical axis (by solving some forms of
Perspective-n-Point problem). [11] trained a large convolutional neural network
to predict the probability that task-space motion of the gripper will result in
successful grasps, independent of camera calibration or the current robot pose,
but it required large-scale data collection.

Except robot-sensor calibration, most grasping methods also rely on kine-
matic calibration [1-7], which is also called level-2 calibration [15]. Kinematic
calibration consists of four sequential steps: modelling, measurement, identifica-
tion and compensation. Measurement is the most difficult and time-consuming
phase of robot calibration.

The measuring techniques of robot-sensor calibration or kinematic calibra-
tion, vary considerably in accuracy, ease of use and cost, but all share the fol-
lowing drawbacks [15]:

— Trained personnel are required to operate the measuring devices.

— Data collection is time-consuming.

Except few of them, these techniques are based laboratory environments.

— The set-up and measurement procedures required a lot of human intervention.

We design a calibration method that can calibrate the pose of a RGB-D
camera relative to the center of the robot, and a grasping policy that doesn’t need
hand-eye calibration, only needs some compensation. The calibration framework
is of great convenience since it only needs a desktop and AR Tag. Based on simple
robot-sensor calibration, we validate the grasping policy on a prototype grasping
task on the robot Kejia, which is a robot as Fig.2 shown, and the designed
grasping approach shows robustness and adaptability in grasping process.
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2 Robot-Camera Calibration

In this work, we introduce a method of calibrating the initial pose of the camera
without a tracking device. Initial pose of robot’s camera can be denoted as a six-
tuple (z,y, 2,7, [, a) in robot base frame, where (z,vy, z) are translation offsets
and (v, 3, ) are RPY (roll-pitch-yaw) rotation angles. The translation offsets
and rotation angles describe translation transformation Ty z(x,y, z) and rota-
tion transformation Rxyz(7, 3, @), and the complete transform C from camera
frame to robot base frame is defined as T'xy z(z,y, 2) Rxyz (7, 0, ).

Fig.3. Plane detected Fig. 4. Horizontal profile Fig.5. Horizontal profile
and its normal vector. of moving. of rotation.

2.1 Roll and Pitch Rotation

In this case, we are using a robust RANSAC estimator of the Point Cloud Library
(PCL) [16] to calculate the best possible model of the planar surface in aX +
bY + ¢Z + d = 0 form. As shown in Fig. 3, the roll rotation causes the normal
vector to change along the Y axis and clockwise rotation causes component b to
increase, and the pitch rotation causes the normal vector to change along the X
axis but clockwise rotation causes component a to decrease.

So we can adjust the roll and pitch rotation values, v and 3, based on the
components a and b of the normal vector of the plane detected by the RGB-D
camera. To improve the accuracy of plane estimation, ROI (range of interest)
and multiple measurements averaging are helpful, and points that are more than
2m away from the camera are also filtered. The ROI is a center area of the
image, and 1/4 size of the origin image. Data used in plane estimation must be
transferred from camera frame to robot base frame, since the plane observed is
perpendicular to axis Z of the robot.

2.2 Yaw Rotation

We calibrate yaw rotation by means of geometric skill with an AR Tag [17],
which allows for video tracking capabilities that calculate a camera’s position
and orientation relative to physical markers in real time. In this work, we use
multi-tag bundles, this can allow for the estimation of the pose of a many-sided
object, even when some of the tags cannot been seen. It can also lead to more
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stable pose estimates and provide robustness to occlusion, the pose of the tags
is provided by ROS (Robot Operating System) package ar_track_alvar.

To measuring the yaw rotation value, the marker was attached to the wall or
ground, no special pose requested, camera moved from point P; to P, as shown
in Fig. 4, where M is the center of the multi-tag bundles, n; and n; are camera’s
direction vector in A and B. Vector Py Ps is parallel to robot’s direction vector
and v, the angle between camera’s direction vector and robot’s direction vector,
is yaw rotation value. Here is an assumption that the forward trajectory is a
straight line. There is some bias when moving straight, but the bias conforms to
be very small, the ability of moving straight is analyzed in Sect. 5.1.

From position P; and P, the position observed of M are (z1,y1,21) and
(2, Y2, 72), which are values transformed from camera frame to robot base frame
based on roll and pitch values calibrated in Sect.2.1. Ignoring the height, only
considering the horizontal component, easy to obtain 1, o, |M Py|, |M Ps|.

Since P; Py is robot’s direction vector and the relative positional relationship
between the motion center and the camera during the moving has not changed,
camera’s direction vectors in point A and B, n; and ng, are parallel to each
other, so ¥y = ¥4 — Y1 = 13 — 1p1. Combining the cosine theorem, |AB| and
13 can be derived, then ¥ = 13 — 11, and 9 is the yaw rotation value « in the
six-tuple (z,v, 2,7, 0, @).

2.3 Offsets

To get the translation offsets, (x,y,z), we make the robot to rotate a certain
angle, like Fig. 5 describes, the point O is the motion center of the robot that is
not moving during the rotation, point A is the camera’s position before rotation
and point B is the position after rotation and M is multi-tag bundles. Vectors v,
and vg that are parallel to robot’s direction vector after RPY rotation calibrated
are camera’s direction vector in A and B. Figure5 is based on a priori knowledge
and the camera is in front of the motion center of the robot.

Before and after the rotation, camera’s relative position to robot’s motion
center O has not changed, ¢ and @3 are equal to each other, and g is equal
to e since |OA| equal to |OB|. The multi-tag bundles can define a coordinate
system. Assume that the coordinate system define by the M-centered tags is W.
Robot can get the position of A and B in ¥ based on the observations of M in
point A and B. We can get |AB| = |Ay. According to the cosine theorem, ¢y
and @5 can be derived since we got the length of AB, M A and M B. Observing
Fig. 5, easy to found:

3 =@1 + 4+ Ps
@ =21 — pa — P5 — P (1)
w6 = (2 — 1 — P4 — P2 — ©5)/2
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Then |AB| and ¢ can be derived. Since |OA| and ¢ have been calculated,
the translation offsets can be derived:

x =]0A|cosp
y =[0A]sing 2)
2= (=2 —22)/2

3 Hand-Eye Calibration

To simplify it, an AR Tag is attached to the wrist, the part of the arm closest
to the gripper. The arm is to be set a initial state without an exact calibration,
we manually put the arm in a straight line, pointing down to the ground, as
the initial state, and each joint’s configure is set to be zero. This is not very
accuracy without measurement or calibration, which can be compensated by an
AR tag mounted on the wrist, as Fig. 6 shown. We manipulate the arm to some
specific poses, observing the AR tag mounted on the wrist, to get the pose of
the end effector by applying transformation from the AR tag to the end effector,
then modelling the pose of the end effector as hand-eye transform with the fixed
arm configuration, that configuration consists of the angle of each joint.

4 The Grasping System

An overview of our system is illustrated in Fig. 8. At each stage, the robot makes
an observation of the world, which is input to a processing module to generate
object information. This object information is combined with the camera’s cur-
rent pose in the predict module to generate a success belief of this grasping. The
robot make an grasping if the belief is acceptable, or a planning module uses the
current belief and object information to determine the next location to make an
observation. The target location is passed to a navigation module which drivers
the robot to the desired goal.

A, gripper
A’, object
0, current location
B’ O, target location

Fig. 6. The gripper and the AR tag. Fig. 7. Robot navigating from O to O'.
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Fig. 8. Overview of the system components.

4.1 Planning

This subsection generate a next navigation location, as shown in Fig.7, O and
O’ are robot’s current location and target location that is where robot stands to
make the gripper tries to reach object location A’ from current location A, OB,
O’ B’ are robot’s direction vector. We can compute OO’ and ZBOO’ based on
the following conditions:

OA=0'A'", ZAOB = ZAOB, 00’ | O'B'

4.2 Grasping

Observing the AR tag on the wrist under a certain arm configure, the posi-
tion of the tag (Tiag, Ytag, #tag) is passed to predict and planning, and angles
{61,062, ...,0N} for robot’s N joints is passed to the grasping module which applies
these values to the joints to finish an grasping.

The grasping module is composed of a sequence actions: turn left/right, mov-
ing forward/backward, elevator up/down and arm control. Robot drives itself
moving to make a success grasp due to the special arm pose.

4.3 Prediction

The distance between the location (x4, y4, 24) the end effector and the observed
object’s location (z,,¥o,, zo) has a marked impact on this belief. The object’s
length, width and height are l,, w,, and h,, the gripper’s length I, width
wy, height h,. The end effector’s position is generated by applying a trans-
formation, that is constant after the AR tag is fixed on the wrist, to AR
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tag’s position. We define the belief as a combination of beliefs on three axes:
belief = belief,belief,belief,.

The components of belief are based on error é(é,é,,€.) caused by actions
described in the grasping module and the observations. If a success grasping
happens, the object must can be put into the opened gripper, that means object’s
width is smaller than gripper’s, so we define belief, as function

belicf, = 1 if (w, —w, — &,]) > gy — ol then 0 (3)

It is hardly to define belief in X and Z axes like (3), for example, robot can
lift the object by only gripping the front of the object. To simplify it, we define
belief, and belief, as following:

belief, =1 if (|zo — z4| + |65 < max(0.5l,,0.250,)) then 0

L ~ (4)
belief. =1 if (|zo — 24| + |€2| < 0.5hg) then 0

4.4 Error Estimation

Each grasping attempt in our experiments composed of five movements, and
each of them results in an error:

Observation e,

Forward or backward movement e™".

Turning. This error is related to the target ¥ of the robot’s angular position
relative to the origin and the actual turning angle 1)’

— Elevator (the lifter as shown in Fig.2) up and down e®¢".

— Arm moving. Since we use an AR Tag, there is no need to take the arm
modelling into account, the error caused by grasping is mainly determined by
the pose repeatability of the arm and can be ignored due to its high accuracy.

Errors, such like e™?, €Y, caused by robot’s movement, can be sampled.
The observation error is sensitive to robot-sensor calibration, if the observation
(%o, Yos 20) in Kinect frame, ground truth (z),y),z2.), Kinect pose calibration
result (e, Ye, Ze, Yes By @) and current real camera pose (z,y., 2L, VL, B, o)
are known, the observation error in base frame can be computed by (3). It is

sensitive to the distance between the object and the gripper.

T =Rxyz(Ye,Be,ac), T' = Rxyz (7L, Be, o)
0z = (To — xa) — (1’:7 - x;,),éy = (Yo — Ya) — (yf, - y(',,),éz = (%0 — 2a) — (z(', - zz/z)
6y =ve — %, 68 = Be — B, b = ac —ay,

To — Ta x!l — 2!, To — Ta Sz (5)
eobs Yo = Ta | _ T’ y/o y? =(T - TI) Yo — Ta +T dy
2o — Ta 2zl — 2, Zo — Ta 0z
1 1 1 1
eobsl eobs2

In (3) (2),y,,2)) is the end effector’s ground truth position value, and
(Za, Yas 2a) 18 the observation in Kinect frame.
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As the observations of object and AR Tag get closer, dz decreases [18] and
so on. In the experiments, we ignore e®®s2. The final error in three axes can be
defined as following;:

o e 4 e+ dleosty’ — ) = )

&y =g’ +dsin(y) — ) (6)
~z :e(z)bs + eelev

5 Experiments

In this section, we evaluate the accuracy and repeatability of the data of the
Kinect and the movements of the robot. Finally, the grasping system is validated
in prototype grasping experiments on the robot Kejia, achieving a high success
rate of grasping. In order to finish these measurements, MCS (Motion Capture
System) [20] is used to track the pose of the markers mounted on the robot.

5.1 Robot-Camera Calibration

As Fig. 9 shown, the ability of robot’s moving straight and turning without center
changed are strong. Based on turning (to find robot’s center) and moving straight
(to find the front vector of robot), we get the transformation from MCS frame
to robot base frame T,,. By solving AX = X B [1], the transformation from
MCS frame to Kinect frame X, can be obtained. Then to get the transformation
from Kinect frame to robot base frame, Ty, = X 1T}, ,, and the pose of Kinect
in robot base frame, (27, 4y., 2., ¢, 6.,4"), which is used as ground truth. The
calibration results based on our method and MCS are reported in Table 1.

-0.7

=He | test data * o testdata
| 1
— fitting —J At

-1a | -11
11 -10 -08 -0.8 -07 06
X X

-1.00 -095 -0.90 -0.85 -0.B0 —-0.75 -0.70

(a) Line fitting. (b) Circle fitting.

Fig. 9. Accuracy of moving straight and turning, the data is metric. St. dev of the
distance of measure points to the fitting line is 1.18 mm, st. dev of distance from points
to the fitting circle’s center based [13] is 1.34 mm.
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Table 1. Calibration results specified in radians.

Method | Our MCS
Mean | St. Dev | Value
Roll 0.0166 | 0.0011 | 0.0100
Pitch | 0.05800.0014 | 0.0819
Yaw 0.0129]0.0024 | —0.0041

5.2 Robot Moving Error

The series of tests have been conducted to evaluate the accuracy of the move-
ments of the robot. Four different of movements have been measured:

— Distance between target and stop position when moving in a straight
line. We measured the moving ability by moving d € {10cm, 15 cm, 20 cm,
25cm, 30 cm}, and the largest bias is less than 5mm and largest standard
deviation is less than 0.6 mm.

— Rotation. The mean values are almost has —2.5° bias, so we add a fixed value,
2.5°, to each rotation value.

— Pose repeatability of arm. In our experiments, the arm pose repeatability is
very strong, the st. dev in six DoF are very small, so in the grasping system,
this factor can be ignored.

— Elevator up and down. This error is very subtle and can be ignored in the
system.

5.3 Grasping

Using bias + 3st.dev as the max error, and the grasping system is validated with
robot Kejia, each test start position is different, 93 attempts have been suc-
cessfully finished in the 100 time grasping attempts. The policy also attempted
manipulation task successfully during the RoboCup@Home 2016, Kejia had fin-
ished 3 grabbing and placing in three minutes in Manipulation and Object Recog-
nition, 1st place in this challenge.

Many teams did not pick any object successfully, we attributed the reason to
their grasping policy is based on high-precision robot-sensor calibration meth-
ods that have the following drawbacks: (1) extra measuring devices are needed
to be delivered to the venue; (2) data collection is time-consuming; (3) except
few of them, these techniques are based laboratory environments. In light of our
observation, no team tried to do the high-precision robot-sensor calibration due
to transport, time, and environmental issues. While after long-distance trans-
portation or reassembly, slight changes or drifts were caused by wear of parts,
dimensional drifts, and tolerances, and all of them need a new calibration.
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Conclusions

We have presented a calibration error tolerance grasping system and a simple
calibration approach to calibrate the camera to the robot. Our results with
more than 100 attempts, validated with a mobile robot, show that policy and
the calibration approach can reduce the work of calibration and work well for

grasping.
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